Ed

NASA Technical Memorandum 104039

SPATIAL ADAPTION PROCEDURES ON UNSTRUCTURED MESHES FOR
ACCURATE UNSTEADY AERODYNAMIC FLOW COMPUTATION

RUSS D. RAUSCH
JOHN T. BATINA
HENRY T. Y. YANG

(NASA-TM-104037) SPATIAL ARDAPTION N91=-20048

PROCEDURES ON UNSTRUCTURED MESHES FOR

ACCURATE UNSTEANY AERNUYNAMIC FLJW ‘
NMPUTATION  (NASA) 17 C3CL N1A unclss

¢ ‘ P G3/02 0003620

MARCH 1991

NANASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665



20




SPATIAL ADAPTION PROCEDURES ON UNSTRUCTURED MESHES
FOR ACCURATE UNSTEADY AERODYNAMIC FLOW COMPUTATION

Russ D. Rausch’
Purdue University
West Lafayette, Indiana 47907

John T. Batina'
Unsteady Aerodynamics Branch
Structural Dynamics Division
NASA Langley Research Center
Hampton, Virginia 23665-5225

Henry T. Y. Yang!
Purdue University
West Lafayette, Indiana 47907

Abstract

Spatial adaption procedures for the accurate and effi-
cient solution of steady and unstcady inviscid flow prob-
lems are described. The adaption procedures were developed
and implemented within a two-dimensional unstructured-
grid upwind-type Euler code. These procedures involve
mesh enrichment and mesh coarsening 1o either add points
in high gradient regions of the flow or remove poinis where
they are not needed, respectively, to produce solutions of
high spatial accuracy at minimal computational cost. The
paper gives a detailed description of the enrichment and
coarsening procedures and presents comparisons with alter-
native results and experimental data to provide an asscssment
of the accuracy and efficiency of the capability. Steady and
unsteady transonic results, obtained using spatial adaption
for the NACA 0012 airfoil, are shown to be of high spatial
accuracy, primarily in that the shock waves are very sharply
captured. The results were oblained with a computational
savings of a factor of approximatcly fifty-three for a stcady
case and as much as twenty-five for the unsteady cascs.

Introduction

Considerable progress has been made over the past
decade in developing methods of dynamically-adapting com-
putational meshes based on the numerical solution of partial
differential equations.! These mcthods are being developed
to produce higher spatial accuracy in such solutions more ef-
ficiently. Spatial accuracy is obviously important when mod-
elling continuous equations with a discrete set of points. It
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is generally understood, of course, that accuracy is improved
when the number of mesh points in a fixed computational
domain is increased. Associated with an increase in the
number of mesh points, however, are increased computer
run times and memory costs, which are proportional to the
number of mesh points. Hence, for efficiency, it is important
to enrich meshes locally based on the numerical solution, in
contrast to using globally fine meshes, to minimize the total
number of mesh points and hence minimize the cost for a
given spatial accuracy. The methods of mesh adaption can
be scparated into threc general categories: (1) mesh regen-
eration, (2) mesh movement, and (3) mesh enrichment. The
first method, mesh regeneration, places the work of adapt-
ing the mesh on the mesh generation program rather than
on the actual numerical solution procedure of the governing
cquations. In this method, a solution is first obtained, and
regions of relatively large discretization errors are detected.
A new mesh is then generated to concentrate points in re-
gions where the large discretization errors occur. This new
mesh may contain more or fewer points than the original
mesh. For the second method, mesh movement, the number
of points in the computational domain remains fixed. To re-
solve more accurately the solution spatially, these points are
moved into regions where solution gradients are relatively
large. In genceral, this can be accomplished by two different
ways. The first way models the mesh as a spring network,
where points are joincd by lincar springs with spring stiff-
ncsses proportional to solution gradients. The mesh is then
allowed to move into the relatively high gradient regions to
produce cffectively a locally finer mesh. The second way
uses forcing functions in a Poisson-equation grid generator to
redistribute points. Either method of mesh movement is eas-
ily implemented within existing solution algorithms because
only the locations of the existing mesh points are changed.
The final method of spatial adaption is mesh enrichment. In
this method points are added to regions of relatively large so-



lution error by dividing locally the cells which make up the
mesh or by embedding finer mcshes in these regions. This
method differs from mesh regeneration and movement in that
the mesh is made finer in local regions while the global mesh
topology remains the same. The method of mesh cnrichment
is also generally regarded as having advantages over regen-
eration and movement, especially for transicnt problems, be-
cause of the higher degree of flexibility in being able to add
points where they are needed and to remove points where
they are not needed. The disadvantage, however, is that
the implementation of mesh enrichment involves significant
modification to existing solution algorithms.

For the Euler and Navier-Stokes equations, computa-
tional fluid dynamics algorithms arc being developed based
on spatial adaption mcthods. With these equations, rel-
alively large spatial discretization crrors may be encoun-
tered with flow featurcs such as shock wavcs, shear layers,
boundary layers, and cxpansion fans. These flow features
can be resolved more accurately using thc adaption meth-
ods mentioned above. Nakahashi et al,2 for cxample, has
used tension and torsional springs to move the mesh into
regions where relatively large spatial discretization errors
occur. This mesh movement approach showed consider-
able versatility for the problems treated. However, various
constants were nceded to control orthogonality and smooth-
ness, and direct control of an optimal mesh adaption proce-
durc was generally not possible. Further examples of spatial
adaption methods include the work of Usab and Murman.? In
Ref. 3, embedded meshes of quadrilaicral cells and nodes
were used in regions of the mesh where shock waves oc-
curred. This approach improved the spatial accuracy of the
numerical method which resulted in highly accurate solu-
tions for steady flow problems. Dannenhoffer and Baron*>
extended the work in this area using irregularly shaped em-
bedded regions, which were coupled to the base mesh by
a multiple-grid solution algorithm. Several other examples
of spatial adaption include methods which use flow solvers
based on unstructured triangular and tewrahedral meshes in
two and three dimensions, respectively. Peraire et al.%” used
mesh regeneration coupled with a finite clement solution al-
gorithm to sharply capture shock waves and complex shock
structures. Lohner et al.®'? have devcloped a procedure

10 locally enrich the mesh for transient flow problems by ‘

dividing elements which make up a basc mesh (0 capture
shock waves. Further, in this procedure, clcments may be
removed (coarsened) from the mesh if they are not necessary
to produce a given level of spatial accuracy.

With respect to solution algorithms based on unstruc-
tured meshes, the results published by the authors'® demon-
strated that these algorithms produce steady and unstcady
solutions of comparable accuracy to results obtained using
structured-grid solution algorithms. The two sets of results
presented in Ref, 14 were obtained using meshes of compa-
rable density, and mesh adaption was not used. Solutions of
higher spatial accuracy are indced possible through the usc

of mesh adaption. Thercfore, the purpose of this paper is to
report on modifications to the two-dimensional unstructured-
grid upwind-type Euler code of Batina'® to include mesh en-
richment and coarscning procedures. The objectives of the
research arc as follows: (1) to develop time-accurate enrich-
ment and coarsening procedures for spatial adaption, (2) to
test the procedures by performing steady and unsteady calcu-
lations for a varicty of cases, (3) to determine he accuracy of
the spatially adapled solutions by making comparisons with
published solutions produced by alternative methods and ex-
isting experimental data and (4) to assess the efficiency of
the spatially adapted solutions by making comparisons of re-
quired computer resources. The evental goal is to develop
a highly accurate and efficient solution algorithm for the Eu-
ler and Navier-Stokes equations for aeroelastic analysis of
complex aircraft configurations. The paper gives a detailed
description of the mesh enrichment and coarsening proce-
dures and gives a brief description of the solution algorithm
of Ref. 15 for complecteness. Stcady and unsteady transonic
results arc presented for the NACA 0012 airfoil to demon-
stratc applications of the spatial adaption procedures. The
unstcady flow results for the NACA 0012 airfoil were ob-
taincd for the airfoil pitching harmonically about the quarte:
chord.

Upwind-Type Euler Solution Algorithm

The unsteady Euler cquations are solved using the two-
dxmcnsmnal upwind-type solution algorithm developed by
Batina.'® The solution algorithm, which is a cell-centered
finite-volume scheme, 7 uses upwind differencing based
on flux-vector splitting similar to upwind schemes developed

 for usc on structured meshes. The present unstructured grid

algorithm is thus referred to as an upwind-type solution al-
gorithm. The spatial discretization of this algorithm involves
a so-called flux-split approach based on the flux-vector split-
ting of van Leer.!® The flux-split discretization accounts for

_the local wave-propagation characieristics of the flow and

captures shock waves sharply with at most one grid point
within the shock structurc. A further advantage is that the
discretization is naturally dissipative and consequently does
not require additional artificial dissipation terms or the ad-
Jjustment of free parameters to control the dissipation. How-
ever, in calculations involving higher-order upwind schemes,
oscillations in the solution near shock waves are expected Lo
occur. To climinate thesc oscillations, flux limiting is usually
requircd. In the present study, a continuously differentiable
flux limiler was employed.!>-17

The Euler cquations are intcgrated in time using an
implicit time-integration scheme involving a Gauss-Seidel

_ relaxation procedure.!> The relaxation procedure is imple-

mented by reordering the clements that make up the unstruc-
turcd mesh from upstrcam to downstream. The solution is
obtaincd by sweeping two times through the mesh as dictated
by stability considerations. The first sweep is performed in



the direction from upstream (o downstream and the second
sweep is from downstream to upstream. For purely super-
sonic flows the second swecp is unnccessary. This relaxation
scheme is stable for large time steps and allows the selection
of the step size based on the temporal accuracy required for
the problem being considered, rather than on the numerical
stability of the algorithm. Consequently, very large time
steps may be used for rapid convergence to steady state and
an appropriate step size may be selected based on temporal
convergence for unsteady cases, independent of numerical
stability issues.

Weighted Averaging

A weighted averaging proccdure is uscd in the two-
dimensional upwind-type Euler solution algorithm to inter-
polate the cell-centered values of the primitive variables to
the nodes. As illustrated in Fig. 1, the weighted average of
the cell-centered values ¢, surrounding a node is given by,
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where the nodal value ¢¢ is computed using the cell weights
w;. Several different weights have becn used in this proce-

Fig. 1 Difference star for computing the weighted average
qo of surrounding cell-centcred values gq;...,,.

dure including the areas of surrounding cells and the recip-
rocal distance from the node to the locations of cell centers.
Becausc of the disparity in cell sizes that occur when using
spatial adaption, the most accurate weighled averaging is
desired. Therefore, a differcnt approach for computing the
weights has been developed based on the work of Holmes
and Connell.!® In Ref. 19, antificial dissipation for a node-
based Navier-Stokes solution algorithm was computed using
a Laplacian operator. The Laplacian L(¢;) al a node was
computed by

L(do) = D _ wi($i — o) @

i=1

using the surrounding nodal values ¢; and the weights w;.
The weights were derived by first noting that the Laplacian
of a lincar function is exactly zero. Since this is a desirable
property to require of the computed Laplacian, the weights
w; in Eq. (2) were derived with this objective. Therefore,
the spatial locations (z;,y;) of ¢; were substituted into Eq.
(2) resulting in

L(zo) = Zwi(li -zg)=0 (3)
i=1

L(w) = Y wi(y: — %) = 0 @)

The weights were then d;llcmimd by defining
w; = 1 4 Aw; ()

where n
=Y (Awy ©6)
i=1

is a cost function. The cost function C' was minimized to
kecp the weights close 1o unity by solving an optimization
problem given the constraints of Egs. (3) and (4). The opti-
mization problem was solved using the method of Lagrange
multipliers where Aw,; was given by

Awi = Ag(zi — o) + Ay (¥i - yo) Q)
The solution yiclded Lagrange multipliers, defined by
_ UeyRy — 1y Rs)

Ay = - 8
([rrlw - ]Ey) ©
(I:'y Rz - I:zRy)
Ay = > 6]
! (]”Ivy - Iiy)

where "
Ry =Y (x;— o) (10)

i=1
Iy = (v — w) an

i=1
Ier = Y (20 = 20)° (12)

izl
Iy =) (v — ) (13)

i=1
Iy = ) (2i = 20)(3: ~ %0) (14)

i=1

Note that the wcights werc computed solely from the dis-
tance between node locations and no special treatment was
required ncar mesh boundaries.



Modifications were made to this procedure for comput-
ing the Laplacian in order to develop a new procedure for
computing the weights in Eq. (1). The first modification
was to express the Laplacian at the nodes using surrounding
cell-centered values, as illustrated in Fig. 1, rather than the
surrounding nodal values. Now the Laplacian at the node
can be expressed by

L(g0) = )_ wi(gi — 90) (15)

i=1

where g, represents the unknown value at the node and g,
are the known values at the surrounding cell-centers. The
weights w, in Eq. (15) are now computed using the node
location (z¢,y0) and the surrounding cell-center locations
(2:, ). Recalling that the computed Laplacian for a lincar
function is zero, then for a linear variation of ¢

Y wi(gi—g0)=0 (16)
i=1

which can be rewritten in the form given by Eq. (1).
Therefore, using the weights from the Laplacian procedure,
Eq. (1) is an exact interpolation of the nodal value ¢, for a
linear variation of cell-centered values ¢;. For a nonlincar
variation of cell-centered values ¢;, the weighted averaging
procedure using the weights from the Laplacian procedure
is second order accurate in space. Although the procedure
is computationally more expensive than area or reciprocal
distance weighted averaging, the increased cost is relatively
small compared to the cost of solving the Euler equations.

Spatial Adaption Procedures

In this section, the spatial adaption procedures are de-
scribed in detail. These descriptions include explanations of
the flow feature detection and the procedures used to enrich
and coarsen the mesh,

Flow Feature Detection

The first step of the spatial adaption procedure is the
detection of regions of relatively large discretization error
so that the computational mesh can be locally enriched to
improve the spatial accuracy or locally coarsened to reduce
the computational costs. These regions generally occur ncar
flow features such as shock waves, stagnation points, slip
lines, and expansion fans for the Euler cquations, where the
dominant flow feature for the cases considered in this study
is a shock wave.

There are a number of flow paramcters that can be
used for enrichment indicators based on the detection of
shock waves. Parameters such as density, pressure, or total
velocity are useful since these quantitics are discontinuous
through shocks. For example, first or second, divided or

undivided diffcrences in one of these parameters, similar
to the work by Dannenhoffer and Baron,* can be used to
detect shock waves. A specific example of an enrichment
indicator is the magnitude of the density gradient |V p| which
is often used to detect shock waves for steady flow problems.
However, for unsicady flows, a measure of the temporal as
well as the spatial variation of the solution is needed. For
this reason, the absolutc value of the substantial derivative
of density %fl was used as an enrichment indicator, since

it is the sum of the local rate of change %f as well as the
convective rate of change «- Vp of density. The substantial
derivative of density can also be written as
i

—[1—;—;'-_—.—(6-?+V-pﬁ'——p\7~ﬁ a7
where the first two terms on the right-hand-side of Eq. (17)
arc simply the continuity equation. The third term can
be viewed as a simplified continuily equation that assumes
sicady, incompressible, lincar flow. Therefore, the differ-
encc between these two continuity equations results in a
mcasurc of the 1) unsteadiness, 2) compressibility, and 3)
nonlinearities of the flow. Since the first two terms on the
right-hand-side of Eq. (17) are zero from the continuity
equation, the subsitantial derivative of density can be rewrit-
ten as

%’7’ =V .i (18)
For unsteady flows, the substantial derivative works well for
detecting developing shock waves, whereas the more com-
monly used enrichment indicators based on the instantaneous
solution such as first or second differences in density tend
to miss the initial shock wave formation. This is especially
true for cases where the shock waves periodically appear and
disappear in time. Other indicators, based on the substantial
derivative of x-momentum pu, y-momentum pv, and energy
e have also been investigated. Thesc substantial derivatives
are writtcn as

Dpu {3_/11{ (7(P“2+P) +pu_v}
Dt ot or dy (19)
- {B_p + puV - ﬁ’}
Oz

Dpv _ {6_p£+ puv + 8(pv2+p)}
Di ot Oz Oy )

- {g—z + pvV - i }
De _ {Qe_ + d(e + p)u + 6(e+p)v}
Dt ot Oz Sy @2n
—{V - (pit) + eV - i}
where once again cach derivative results in the difference be-
tween a complete conservation equation and an approximate




equation. The first expression in brackets on the right-hand-
side of Eqgs. (19)-(21) is zero for the Euler x-momentum,
y-momentum, and energy equations, réspectively. The last
expression in brackets is an approximate equation of the re-
spective conscrvation laws. For cxample, the second cqua-
tion in brackets in Eq. (19) can be derived from the conser-
vation of x-momentum equation if the equation is simplificd
by assuming the local ratc of change §- and the convective
rate of change 4 - V of x-momentum is zero, Thercfore,
as one might expect, if the absolutc value of Eq. (19) is
used as an enrichment indicator it would dclect regions of
the flow where the x-momentum is most rapidly changing.
Similarly, Eqs. (20) and (21) would detect the rate of change
of y-momentum and energy, respectively. To evaluale each
expression as an enrichment indicaltor, the substantial deriva-
tives of the conserved variables were compuled for a tran-
sient shock problem. In this study, the performance of each
of the substantial derivatives in detecling shock waves was
found 1o be similar. It is not surprising, however, since all
of the indicators involve the same term V - .

To detect viscous flow features, the idea of using
the difference between completc cquations and approxi-
mate equations can be expanded upon by considering the
differences between the momentum or cnergy equation of
the Navier-Stokes equations and an approximate inviscid
equation. For cxample, using thc momentum equation of
the Navier-Stokes equations, the substantial derivative of x-
momentum can be written as

Dpu | dpu pw? +p—1ez)  O(puv— Try)
Dt T ) ot or + by
dp L Ory 07
—{5;+puV-u— B 8yy}
(22)
This, of course, is similar 1o Eq. (19) except that the
viscous fluxes ( Zzz=, 9;—;1 have been added and subtracted

on the right-hand-side. Thercfore, using the idcas above,
an enrichment indicator £ for deiecting inviscid as well
as viscous flow features can be constructed by eliminating
the viscous fluxes from the sccond cexpression cnclosed in
brackets of Eq. (22) and is writicn as

E:I—a—l—) + puV -4 (23)
oz

Although the enrichment indicator in Eq. (23) is not used
in this study, it is mentioned to demonstratc a procedure
for constructing an indicator bascd on the governing viscous
flow cquations. The cnrichment indicator uscd in this study,
however, was the absolutc value of the substantial derivative
of density (Eq. (18)) since the Euler equations were used.

Mesh Enrichment

Generally, mesh enrichment is performed by starting
with a relatively coarse mesh of cells and then subdividing

,thcéé cells until a given level of spatial accuracy has been

obtained. To prevent cells from being enriched 0o many
times ncar flow discontinuities such as shock waves, an up-
per bound is placed on the number of times a cell can be
divided. For transicnt problems the mesh enrichment proce-
dure may be performed at each time step of the integration
of the governing flow cquations or it may be performed once
cvery sct number of time steps.

£\
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(b) type-2 clement enrichment.
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(c) restriction on further enrichment of type-2 elements.
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Fig. 2 Diagrams illustrating mesh enrichment possibilities.

Mesh enrichment is performed by using the enrichment
indicator 1o determine if a cell is to be subdivided into
smaller cells. To accomplish this, the enrichment indicator is
computed for each ccll and compared with a preset threshold
valuc o determine whether a cell should be subdivided, If
the threshold is exceeded, a ncw node is created at the
midpoint of cach cedge of the triangular cell, and the celi
is subdivided into four smaller cells. Special care must be
laken, however, when an cdge that is to be bisected lies
on a boundary of the mesh, since the midpoint of the edge
does not gencrally lic on the boundary. In this case, the
location of the new node is determined by using a parametric
spline of the boundary coordinatcs. Further, the values of
the flow variables for the new cells are determined from
a lincar interpolation of conserved variables located at the
nodes and the cell centers of the original cells.

For a given ccll 1o be enriched, cither one edge or all
three edges are bisccted. In the event that only two edges
arc marked to be bisccted, the third cdge is automatically
bisected to prevent the creation of highly skewed or stretched
cells. Each time the mesh is enriched, a cell may be divided
in onc of two ways, as shown in Figs. 2(a) and 2(b). The



first way, shown in Fig. 2(a), results when all three edges
of a cell have been marked for enrichment. In this situation
the cell is divided into four new cells where the vertices of
the inner cell are in general midpoints of edges that make
up the original cell. The original ccll is thus rcferred o as a
type4 element since after enrichment it becomes four new
triangular cells. The second way, shown in Fig. 2(b), occurs
if only one edge of the base cell is marked for enrichment.
In this situation, the marked edge is bisecied, and two new
cells are formed. The original cell is thus referred (o as a
type-2 clement since after enrichment it becomes (wo new
cells. New cclls formed from a type-4 element may be
enriched further. However, to prevent highly stretched celis,
cells formed from a type-2 element are restricted from being
divided further as indicated in Figs. 2(c) and 2(d). For cells
from a type-2 element, if any of the five edges thal make up
the two new cells are marked for enrichment, the original
cell is made into a type-4 element as shown in Fig. 2(c). If
in addition to this, either or both of the bottom two edges
are marked (the lower left, right, or both), cclls of the type-4
element are further enriched accordingly, as shown in Fig.
2(d).

Mesh Coarsening

Gencrally, mesh coarsening removes added nodes and
cells from previously enriched meshes to delete them from
local regions of the mesh where certain flow features are
no longer present. This procedure is necessary to cfficiently
adapt meshes to the numerical solution of the governing
flow equations in order t0 minimize computational cost.
The mesh coarsening procedure starts by marking all of
the cells that do not have edges that are marked to bc
bisected from the mesh enrichment procedure. Figure 3
shows an example of the coarsening procedure where the
dashed lines represcnt cells formed by a previous enrichment
of the mesh, In Fig. 3(a), cells which are candidates for
removal are denoted by a “1". The marked cells are then
used to determine nodes that are candidates for removal.
As shown in Fig. 3(b), thc candidate nodes that may be
removed are nodes that arc surrounded by cclls that arc
candidates for removal (identified by the "ones"” in Fig. 3(a)).
Cells that are to be removed from the list of candidates are
detcrmined by searching the tree data structure that storcs
the mesh enrichment history. Cells for removal are cells that
came from type-2 or type-4 elemenits and are subsequently
marked for removal. Once the nodes and elements have becn
selected they are subjected to a final simultaneous evaluation
for actual removal from the mesh. Each time the mesh
is coarsened, cells and nodes may be removed in one of
several ways as shown in Fig. 4. (In the figure, nodes to be
removed are indicated by the open circles and fixed nodes
are indicated by the closed circles.) For a type-4 element,
if all three of the nodes that form the inner triangle arc
candidate nodes, then the nodes are removed climinating the
inner triangle as shown in Fig. 4(a). This leaves only the onc

original cell that was previously divided into four. Similarly,
if two of the three nodes that form the inner wriangle are
candidate nodes, the two nodes are removed and a type-2
clemeni is formed as shown in Fig. 4(b). If only one of the
candidate nodes is marked then nothing is done. For a type-
2 clement there is only one node that may be removed which
is the midpoint of a previously bisected edge. Removal of
this node leaves only the cell that was originally divided
into two as shown in Fig. 4(c).

0 fixed cell @ fixed node
1 candidatc cell to be O candidate node to be
removed removed

N7 UK
N N

(a)identify cells to (b)identify nodesto  (c) final mesh.
bc removed. be removed.

Fig. 3 Diagrams illustrating details of the mesh
coarsening proccdure.,
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(a) three nodes removed from type-4 element.
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(b) two nodes removed from type-4 element.

;

>
>

(c) on¢ node removed from type-2 clement.

Fig. 4 Diagrams illustrating mesh coarsening possibilities.



4

Temporal Convergence Considerations

Careful consideration must be given to the time-sicp
chosen to ensure temporal convergence of unsteady prob-
lems, especially when spatial adaption procedures are used.
In general the temporal convergence of the numerical solu-
tion of a time accurate problem is difficull to quantify and
is related to the nondimensional lime-step At, a characteris-
tic length (A/s), and the local maximum characteristic wave
speed (Ju] + a) of each cell in the computational mesh. This
relation is given by the Courant-Friedrichs-Lewy (CFL)
number for each cell,

CFLw At%(lul + a) (24

where s is the length of a ccll cdge, A is the area of the
cell, u is a local flow specd normal to a cell edge, and a
is the local speed of sound. For unsteady problems, expe-
rience has shown that the local C'F L number must remain
below approximately 20 for solutions to be converged in
time. However, the local allowable C'F' L, number is highly
dependent on the time-marching procedure used. For exam-
ple, either explicit or implicit timc-marching procedures may
be used to integrate the governing flow equations in time for
unsteady problems. Since the allowable C F' L number bascd
on a stability analysis of an explicit lime-marching procedure
is usually small compared to 20, the time-step is restricted to
be relatively small. Therefore, the numerical stability of an
explicit time-marching procedure dictates the time-step that
can be used. For an implicit time-marching procedure, how-
ever, numerical stability of the procedure is, in general, not
an issue. Hence, the time-sicp should be based on minimiz-
ing the effects of linearization errors, minimizing the cffects
of relaxation errors (or factorization errors in the case of
a factored scheme), and obtaining a temporally converged
solution. Irrespective of the time-marching procedure used,
the spatial adaption procedurcs have a significant effect on
the allowable time-siep when the C'F L number is restricted
by either the temporal accuracy of the solution or the nu-
merical stability of the solution algorithm. This effect can
be demonstrated in a simple example of mesh enrichment of
a single cell. Suppose, for example, the local C'F L numbcer
for a cell is restricted to 20 for a temporally converged so-
lution and the cell is cnriched onc level, where it is divided
into four smaller cclls each with arca A/4 as shown in Fig.
5. Likewise, each edge of the ccll is bisected resulting in
each of the new cells having edge lengths of s/2. Since,

A A/
*

B
s2 sf2

Fig. 5 Diagram illustrating change in characteristic lcngth
and arca of an enriched computational ccll.

<——S—P

from Eq. (24), the time-step is proportional to the charac-
teristic length (A/s), the allowable time-step is halved when
the ccll is cnriched one level.

A4 1A

Aiocs/2._2; (25)
For unsteady problems involving a pilching airfoil in forced
harmonic motion, the cffect of enrichment on the number
of time-steps per cycle of motion can also be demonstrated.
First the number of time-steps per cycle of motion N is
related to the time-slep by

m

T IMLAL

where & is the reduced frequency and M, is the freestream
Mach number (since At is nondimensionalized by the
freestream speed of sound). Therefore, the number of time-
steps per cycle of motion is inversely related 1o the time-
slep.

(26)

N

1

N x X 1))
Since the time-step is halved as the mesh is enriched one
level, the number of time-steps required per cycle of motion
doubles for a similar Ievel of temporal convergence, Hence,
the relationship between the number of time-steps per cycle
of motion N required on a mesh to the number of time-steps
per cycle of motion N,, on the same mesh using n levels of
mesh enrichment can be stated as

N, =2"N (28)

As an cxample, supposc an unstcady problem on a coarse
mesh requires 1250 time-steps per cycle of motion for a
tcmporally converged solution. The same mesh and case us-
ing three levels of enrichment would require approximately
10000 time-stcps per cycle of motion,

Results and Discussion

Calculations were performed for the NACA 0012 airfoil
to assess the accuracy and cfficiency of the spatial adaption
procedures. Steady and unsteady airfoil results are presented
for comparison with published solutions using alternative
mcthods and cxperimental data to determine the accuracy of
the results. Timing comparisons are also made between re-
sults obtaincd using globally (estimated) and locally adapted
meshes to determine the computational savings obtained by
using the spatial adaption procedures.

Steady Results

Steady flow results were obtained for the NACA 0012
airfoil for comparison with results reported by Pulliam and
Barton?? and scveral other alternative methods for an invis-
cid case choscn by the AGARD Working Group 07, a sub-
pancl of thc AGARD Fluid Dynamics Pancl. The case of
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Fig. 6 Comparison of meshes used in the calculation for the NACA 0012 airfoil at M., = 0.8 and aqg = 1.25°.

\

(a) original mesh.
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(b) adapted mesh.

Fig. 7 Comparison of pressurc contour lines (Ap = 0.025) from solutions obtained for the NACA

0012 airfoil at M, = 0.8 and ay = 1.25°.

interest is AGARDO1, a NACA 0012 airfoil at a freestream
Mach number of M, = 0.8 and an angle of attack of a
= 1.25°. For this case, the starting mesh and final spa-
tially adapted mesh are prescnted along with corresponding
pressure contours for comparison with results of Ref. 20.
The slarting coarse mesh for the calculation, shown in Fig.
6(a), contains 1854 nodes and 3628 cells and extends 20
chordlengths to a circular outer boundary.  The solution
was obtained by adapting the mesh to the solution cvery
500 itcrations for the first 2000 iterations (four levels of en-

richment), and then the solution was converged o machince
zcro on the final adapicd mesh. The final mesh after four
levels of enrichment, shown in Fig. 6(b), contains 8947
nodes and 17653 cclls. A comparison of pressure contours
(Ap = 0.025) from the solutions obtained on the original
mesh and the adapicd mesh are shown in Figs. 7(a) and
7(b), respectively. For this case, there is a relatively strong
shock wave on the upper surface of the airfoil near 62%
chord and a rclatively weak shock wave on the lower sur-
face ncar 30% chord. The comparison between the two scls
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Fig. 8 Results from Pulliam and Barton® for the NACA 0012 airfoil at Mo, = 0.8 and ao = 1.25°.

of contour lines reveals a considcrable improvement in the
shock resolution when spatial adaption is used. For further
comparison, thc mesh and pressurc contour lines from the
solution of Ref. 20 are shown in Fig. 8, which is believed
to be one of the most accurale of the results generated by the
alternative methods. Results from Ref. 20 were computcd
on a structured mesh of C-typc topology containing 560 x
65 mesh points as shown in Fig. 8(a). This mesh indicates
that points were clustered above and below the airfoil in the
shock regions to produce a more accurate result. A compari-
son of the pressure contour lines from Pulliam and Barton,?
shown in Fig. 8(b), with the contour lincs shown in Fig.
7(b), obtained with the present spatial adaption procedurc,
indicates excellent agreement which verifies the accuracy of
the adaption procedurcs. Finally, comparisons of computcd
lift, drag, and moment coefficicnts from the structurcd mesh
solutions reported in Rel. 20 and the present results arc
given in Table 1.  The prescnt results are shown at the
bottom of Table 1 and the coefficients listed from solutions
5 and 5* are from Pulliam and Barton.2’ The remaining so-
lutions are from alternative mcthods and arc included for
completeness. Solution 5* is an improved result in compar-
ison with solution 5, where improved boundary conditions
and a fincr mesh were used. A comparison of cocfficients
from the present solution with those of solution 5*, indicatcs
agreement to within 1% for the lift and drag cocflicicnts and
10 within 5% for thc moment cocflicient,

The computational savings for the stcady flow prob-
lem can be estimated by comparing the number of cclls
in the adapted mesh to the number of cells in a globally
fine mesh. The total number of cells for the globally finc
mesh is computed by multiplying the number of cclls in
the starting coarsc mesh by four (since each ccll is divided

Table 1 Comparisons of computed lift, drag, and moment
coefficicnts from the structured mesh solutions
reporicd in Ref. 20 and the present results
obtained using spatial adaption for the NACA
0012 airfoil at M., = 0.8 and ag = 1.25°,

Soln# | Type Mesh Size c Cq Cm
1 CV 189X 25 03642 | 0.0225 | -0.0376
2 C 188 X 24 0.3736 | 0.0244 | -0.0411
3 O 158X 23 0.3463 | 0.0223 | -0.0358
5 C 249 X 67 03661 | 0.0229 | 0.0430
6 O 192X 39 0.3474 | 0.0221 | -0.0374
8 (0] 128 X 28 0.3500 | 0.0221 | -0.0370
9 (o] 320 X 64 03632 | 0.0230 | -0.0397
5* C 560 X 65 0.3618 | 0.0236 | -0.0411

present U 7 8947N, 17653C 03600 | 0.0238 | -0.0390

into four smaller cells) raised to a power represented by
the number of cnrichment levels. Therefore, a globally fine
mcsh would contain 928768 cells (3628 x 4'), which in
comparison with thc final adapted mcsh containing 17653
cells, results in a computational savings of approximately
fifty-threc. 1f timing comparisons arc made with solutions
obtaincd using structured grid algorithms, the computational
overhead of the indirect addressing of the unstructured grid
algorithm must be accounted for. For example, the compu-
tational work for stcady-state solutions obtained using un-
structured grid algorithms have been shown to be 2 to 5
times more cxpensive than those obtained using structured
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Fig. 10 Instantaneous contour lines (Ap = 0.02) from the spatially adapted solution for the NACA 0012 airfoil
pitching harmonically at M, = (L.599, ap = 4.86°, o = 2.44°, and k = 0.0814.
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grid algorithms.' Nonctheless, when spatial adaption pro-
cedures are used with unstructured grid algorithms, an order
of magnitude computational savings can be achieved over
solutions obtained using structured grid algorithms for com-
parable spatial accuracy.

Unsteady Results

Unsteady results are presented for the NACA 0012 air-
foil using spatial adaption for AGARD cases 3 and 5, pro-
posed by the AGARD Structures and Materials Pancl.22 Both
cases involve the NACA 0012 airfoil pitching harmonically
about the quarter chord at a rcduced frequency bascd on
semichord of k£ = 0.0814. The calculations were performed
for three cycles of motion to obtain a periodic solution us-
ing 10000 time-steps per cycle starting with the same coarse
mesh (Fig. 6(a)) that was used for the non-adapted steady
flow result. During the course of the calculation, the mesh
was spatially adapted every 10 time-steps using three levels
of enrichment.

AGARD Case 3

Results were obtained for the airfoil pitching with an
amplitude of a; = 2.44° at M, = 0.599 and a, = 4.86°
(referred to a3 AGARD case 3). Figure 9 shows the in-
stantaneous adaptcd meshes and Fig. 10 shows the corre-
sponding instantaneous density contour lines (Ap = 0.02).

— Upper surface - Calculated
- = Lower surfacc - Calculated

The instantancous meshes and density contour lines during
the third cycle of motion were plotted at eight points in
time. In each plot, the instantaneous pitch angle a(7) and
the instantancous angular position in the cycle kr are noted.
The instantancous meshes (Fig. 9) clearly indicate the cn-
richment in regions ncar the shock wave on the upper sur-
face of the airfoil and near the stagnation points. Figure 9
also shows that regions of the mesh near the moving shock
and in the wake of the airfoil have been enriched and then
coarsened throughout the cycle of motion. Specifically, the
instantancous mesh in Fig. 9 at k7 = 26° shows that the
cnrichment indicator works well for detecting the develop-
ing shock wave on the upper surface as is further shown
in the density contours (Fig. 10). These density contours
during the cycle demonstrate the ability of the spatial adap-
tion procedures to produce sharp transient shock waves. The
corresponding surface pressure distributions during the third
cycle of motion arc shown in Fig. 11 for comparison with
the cxperimental data of Ref. 23. In each pressure plot
the instantancous pitch angle a(7) and the angular position
k in the cycle are noted. During the first half of the cycle,
there is a shock wave on the upper surface of the airfoil
while the flow over the lower surface remains subcritical
throughout the entire cycle. The pressure distributions in-
dicate that the shock position oscillates over approximately
12% of the chord along the upper surface, requiring the
spatial adaption proccdure 10 track the movement and de-

O Upper surface - Experiment
O Lower surface - Experiment

3. r - [- o r
2.b . § :
L} - - -
-Cp 0 -
aft) = 5.95° d" o(t) = 697° W aw=6s7 ot) = 5.11°
-Lf kt = 26° B kt = 60° - kt = 135° - kt=174°
_2_ Ll 1 1 1 4 43 Lo 1 L 1 1 J Lt i 1 i 1 J Lo L 1 L 1 J
3.r - - -
2.t - - -
1.FF -
-C
P o}t g
o(t) = 3.49° oft)=243° o(t) =2.67° o(t)=4.28°
-1.f kt=214° kt = 265° kT = 296° - kT = 346°
_2 L 1 L 1 1 } L £ 1 1 1 J LL 1 1 L L J L1 1 . i 1 1 J
0 10 | 1 1
x/c x/c x/c x/c

Fig. 11 Comparison of instantaneous pressurc distributions for the NACA 0012 airfoil pitching harmonically at M,
= 0.599, ao = 4.86°, oy, = 2.44°, and k = 0.0814 computed using spatial adaption.
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a(t) = —0.54° k1t = 347°

o) = 1.08°, k1 = 26° a(t) =2.34° k1= 694> oft)=2.01°, kTt =127° oft) =0.52°, kt = 168°

(1) = -1.25° kt =210°
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Fig. 13 Instantaneous contour lincs (Ap = 0.02) from the spatially adapted solution for the NACA 0012 airfoil
pitching harmonically at M,, = 0.755, aq = 0.016°, «, = 2.51°, and k = 0.0814.
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velopment of the transicnt shock wave as it appears and
disappears during the cycle. In gencral, the calculated results
using the spatial adaption procedures compare well with the
experimental data.

The computational savings obtained by using the spatial
adaption procedures can be estimated by comparing the
total number of cells marched in time with the estimated
number of cells marched in time if a globally fine mesh
were used. The total number of cells marched in time for the
globally fine mesh is computed by multiplying the number
of cells in the starting coarse mesh by the number of cycles,
the number of time-steps per cycle, and four raised to the
number of enrichment levels (since each cell is divided into
four smaller cells). Therefore, for AGARD case 3, a total of
276 million cells were marched compared to 6966 million
(3628 x 3 x 10000 x 4%) cells if a globally fine mesh werc
used, resulting in a computational savings of a factor of
twenty-five. This factor does not include the computational
ovcrhead of the spatial adaption procedure, however, which
was approximately 7% of the total CPU time.

AGARD Case 5

Results were obtained for the airfoil pitching with an
amplitude of o, = 2.51° at M, = 0.755 and oy = 0.016°
(referred to as AGARD case 5). Figure 12 shows the instan-
taneous adapted meshes and Fig. 13 shows the correspond-

= Upper surface - Calculated
— = Lower surface - Calculated

a(t) =1,09° a(t) = 2.34° a(t) =0.52°
0.8 kt =26° - kT =69° kt=168°
L H A d J

ing instantancous density contour lines (Ap = 0.02). The
instantancous meshes and density contour lincs during the
third cycle of motion were ploited at eight points in time.
In each plot, the instantaneous pitch angle a(r) and the in-
stantaneous angular position kr in the cycle are noted, The
instantaneous meshcs (Fig. 12) clearly indicate the enrich-
mcnt in regions near the shock waves and near the stagnation
points. They also show coarsened regions where previously
cnriched regions have relatively small flow gradients. The
density contours during the cycle (Fig. 13) demonstrate the
ability of the spatial adaption procedures to produce sharp
transicnt shock waves. The corresponding surface pressure
distributions during the third cycle of motion are shown in
Fig. 14 for comparison with experimental data.® In each
pressurc plot the instantaneous pitch angle o{7) and the an-
gular position k7 in the cycle are noted. During the first part
of the cycle there is a shock wave on the upper surface of
the airfoil, and the flow over the lower surface is predomi-
-nately subcritical. During the latter part of the cycle the flow
about the upper surface is subcritical while a shock forms
along the lower surface. The pressure distributions indicate
that the shock position oscillates over approximately 25%
of the chord along the upper and lower surfaces, requiring
the spatial adaption procedure to accurately track the move-
ment and development of the transient shocks. In general
the calculated results using the spatial adaption procedures
comparc well with the experimental data. Figure 15 shows

O Upper surface - Experiment
0O Lower surface - Experiment

-0.4 oft) = —1.25° (1) = —2.41°
0.8 kt =210° - kt = 255° kt = 347°
-1.2 — 1 L e I L 1 1 A ] 1 L 1 L ]
0 10 10 10 1
x/c x/c x/c x/c

Fig. 14 Comparison of instantancous pressure distributions for the NACA 0012 airfoil pitching harmonically at M,
= 0.755, ag = 0.016°, a; = 2.51°, and k = 0.0814 computed using spalial adaption.
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the variation of the number of cells in the mesh throughout
the third cycle of motion.  In this figure, the maximum
number of cells is approximately 14400 and the minimum
number of cells is near 12900. These values indicate a sig-
nificant computational savings when spatial adaption is used
when compared (o using a globally finc mesh of 232192
cells (comparable mesh density of 3 levels of enrichment on
starting coarse mesh of 3628 cells is 3628 x 43 = 232192
cells) for similar spatial accuracy.

The computational savings obtained by using the spatial
adaption procedures can again be estimated by comparing
the total number of cells marched in time with the number of
cells marched in time if a globally fine mesh were used. For
compared to 6966 million cells for the globally fine mesh
resulting in a computational savings of a factor of 17. This
factor shows a decrease in savings compared to the savings
factor obtained for AGARD casc 3 due 10 the presence of
a shock wave during the majority of the cycle of motion.
Further, the computational savings factor does not include
the computational overhead of the spatial adaption proccdurc
which was approximatcly 7.5% of the total CPU time.

Concluding Remarks

Spatial adaption procedures for the accurate and effi-
cient solution of steady and unsteady inviscid flow problems
were described. The adaption procedures werc developed
and implemented within a two-dimensional unstructurcd-
grid upwind-type Euler code. These procedures involve
mesh enrichment and mesh coarsening to either add points
in high gradient regions of the flow or remove points where
they arc not needed, respectively, to produce solutions of
high spatial accuracy at minimal computational cost. A

14

novel approach for detecting flow features bascd on the sub-
stantial derivative of densily was used as an enrichment in-
dicator. This enrichment indicator worked well for detecting
devcloping shock waves in unsteady flows. This is a signifi-
cant improvement over the more commonly used enrichment
indicators based on the instantaneous solution (such as first
or sccond diffcrences in density) that miss the initial shock
wave formation, especially for cases where the shock waves
periodically appear and disappear in time.

Stcady and unstcady transonic results were presented
for the NACA 0012 airfoil to demonstrate applications of the
spatial adaption proccdures to two-dimensional problems.
The unsteady flow results were obtained for an airfoil pitch-
ing harmonically about the quarter chord. Both the steady
and unsteady solutions obtained using spatial adaption were
shown to be of high spatial accuracy, primarily in that the
shock waves were very sharply captured. Comparing the
cost of results obtained on a spatially adapted mesh with the
cstimated cost of results obtained on a globally fine mesh of
comparable mesh density, a computational savings of a fac-
tor of approximately fifty-threc was achieved for the steady
calculations using four levels of cnrichment. Similar calcu-
lations using structured grid algorithms were estimated to be
an order of magnitude morc cxpensive for comparable spatial
accuracy. Comparisons of coefficients from the spatial adap-
tion solution with those of Pulliam and Barton,?® indicated
agreement to within 1% of the lift and drag cocfficients and
to within 5% for the moment coefficient. Similarly, for the
unsteady calculations, a computational savings of a factor of
as much as twenty-five was achieved and comparisons that
were made with experimental pressure data indicated good
agreement,
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